Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 312
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338678

RESUMO

This study investigates the role of lysosomal acid lipase (LIPA) in sex hormone regulation and gonadal development in Macrobrachium nipponense. The full-length Mn-LIPA cDNA was cloned, and its expression patterns were analyzed using quantitative real-time PCR (qPCR) in various tissues and developmental stages. Higher expression levels were observed in the hepatopancreas, cerebral ganglion, and testes, indicating the potential involvement of Mn-LIPA in sex differentiation and gonadal development. In situ hybridization experiments revealed strong Mn-LIPA signaling in the spermatheca and hepatopancreas, suggesting their potential role in steroid synthesis (such as cholesterol, fatty acids, cholesteryl ester, and triglycerides) and sperm maturation. Increased expression levels of male-specific genes, such as insulin-like androgenic gland hormone (IAG), sperm gelatinase (SG), and mab-3-related transcription factor (Dmrt11E), were observed after dsMn-LIPA (double-stranded LIPA) injection, and significant inhibition of sperm development and maturation was observed histologically. Additionally, the relationship between Mn-LIPA and sex-related genes (IAG, SG, and Dmrt11E) and hormones (17ß-estradiol and 17α-methyltestosterone) was explored by administering sex hormones to male prawns, indicating that Mn-LIPA does not directly control the production of sex hormones but rather utilizes the property of hydrolyzing triglycerides and cholesterol to provide energy while influencing the synthesis and secretion of self-sex hormones. These findings provide valuable insights into the function of Mn-LIPA in M. nipponense and its potential implications for understanding sex differentiation and gonadal development in crustaceans. It provides an important theoretical basis for the realization of a monosex culture of M. nipponense.


Assuntos
Palaemonidae , Animais , Masculino , Palaemonidae/metabolismo , Sêmen/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Colesterol/metabolismo , Triglicerídeos/metabolismo , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo
2.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279207

RESUMO

Macrobrachium nipponense is gonochoristic and sexually dimorphic. The male prawn grows faster and usually has a larger size than the female. Therefore, a higher male proportion in stock usually results in higher yield. To investigate the impact of temperature on sexual differentiation in M. nipponense, two temperature treatments (26 °C and 31 °C) were conducted. The results showed that compared to the 31 °C treatment (3.20 ± 0.12), the 26 °C treatment displayed a lower female/male ratio (2.20 ± 0.11), which implied that a lower temperature could induce masculinization in M. nipponense. The temperature-sensitive sex differentiation phase was 25-35 days post hatching (DPH) at 26 °C while 15-20 DPH at 31 °C. Transcriptome and qPCR analysis revealed that a lower temperature up-regulated the expression of genes related to androgen secretion, and down-regulated the expressions of genes related to oogonia differentiation. Thirty-one temperature-regulated sex-differentiation genes were identified and the molecular mechanism of temperature-regulated sex differentiation was suggested. The finding of this study indicates that temperature regulation can be proposed as an innovative strategy for improving the culture yield of M. nipponense.


Assuntos
Palaemonidae , Penaeidae , Animais , Masculino , Feminino , Palaemonidae/genética , Palaemonidae/metabolismo , Diferenciação Sexual/genética , Temperatura , Transcriptoma , Penaeidae/genética , Proteínas de Artrópodes/genética
3.
Front Endocrinol (Lausanne) ; 14: 1266641, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075036

RESUMO

In the culture of crustaceans, most species show sexual dimorphism. Monosex culture is an effective approach to achieve high yield and economic value, especially for decapods of high value. Previous studies have developed some sex control strategies such as manual segregation, manipulation of male androgenic gland and knockdown of the male sexual differentiation switch gene encoding insulin-like androgenic gland hormone (IAG) in decapods. However, these methods could not generate hereditable changes. Genetic manipulation to achieve sex reversal individuals is absent up to now. In the present study, the gene encoding IAG (EcIAG) was identified in the ridgetail white prawn Exopalaemon carinicauda. Sequence analysis showed that EcIAG encoded conserved amino acid structure like IAGs in other decapod species. CRISPR/Cas9-mediated genome editing technology was used to knock out EcIAG. Two sgRNAs targeting the second exon of EcIAG were designed and microinjected into the prawn zygotes or the embryos at the first cleavage with commercial Cas9 protein. EcIAG in three genetic males was knocked out in both chromosome sets, which successfully generated sex reversal and phenotypic female characters. The results suggest that CRISPR/Cas9-mediated genome editing technology is an effective way to develop sex manipulation technology and contribute to monosex aquaculture in crustaceans.


Assuntos
Sistemas CRISPR-Cas , Palaemonidae , Humanos , Animais , Masculino , Feminino , RNA Guia de Sistemas CRISPR-Cas , Androgênios/metabolismo , Diferenciação Sexual/genética , Palaemonidae/genética , Palaemonidae/metabolismo , Mutação
4.
Int J Mol Sci ; 24(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139271

RESUMO

Sexual manipulation in the giant freshwater prawn Macrobrachium rosenbergii has proven successful in generating monosex (both all-male and all-female) populations for aquaculture using a crustacean-specific endocrine gland, the androgenic gland (AG), which serves as a key masculinizing factor by producing and secreting an insulin-like AG hormone (IAG). Here, we provide a summary of the advancements from the discovery of the AG and IAG in decapods through to the development of monosex populations in M. rosenbergii. We discuss the broader sexual development pathway, which is highly divergent across decapods, and provide our future perspective on the utility of novel genetic and genomic tools in promoting refined approaches towards monosex biotechnology. Finally, the future potential benefits of deploying monosex prawn populations for environmental management are discussed.


Assuntos
Palaemonidae , Animais , Masculino , Feminino , Palaemonidae/genética , Palaemonidae/metabolismo , Androgênios/metabolismo , Insulina/metabolismo , Desenvolvimento Sexual , Água Doce
5.
Ecotoxicol Environ Saf ; 268: 115723, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37992642

RESUMO

High carbonate alkalinity is one of the major stress factors for survival of aquatic animals in saline-alkaline water. Exopalaemon carinicauda is a good model for studying the saline-alkaline adaption mechanism in crustacean because of its great adaptive capacity to alkalinity stress. In this study, non-targeted liquid chromatography-mass spectrometry (LC-MS) metabolomics analyses based on high-throughput RNA sequencing (RNA-Seq) were used to study the metabolomic responses of hepatopancreas in E. carinicauda at 12 h and 36 h after acute carbonate alkalinity stress. The results revealed that most of the significantly differential metabolites were related to the lipid metabolism. In particular, the sphingolipid metabolism was observed at 12 h, the glycerophospholipid metabolism was detected at 36 h, and the linoleic acid metabolic pathway was significantly enriched at both 12 h and 36 h. The combined transcriptome and metabolome analysis showed that energy consumption increased at 12 h, resulting in significant enrichment of AMPK signaling pathways, which contributed to maintain energy homeostasis. Subsequently, the hepatopancreas provided sufficient energy supply through cAMP signaling pathway and glycerophosphate metabolism to maintain normal metabolic function at 36 h. These findings might help to understand the molecular mechanisms of the E. carinicauda under carbonate alkalinity stress, thereby promote the research and development of saline-alkaline resistant shrimp.


Assuntos
Palaemonidae , Transcriptoma , Animais , Hepatopâncreas , Palaemonidae/genética , Palaemonidae/metabolismo , Carbonatos/metabolismo
6.
J Exp Zool A Ecol Integr Physiol ; 339(10): 978-993, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37602652

RESUMO

Ammonia is a common environmental stress factor that constrains aquaculture industry development. This study evaluated the effect of carbohydrate levels and ammonia stress in oriental river prawn (Macrobrachium nipponense). The experiment had six treatments containing two water ammonia levels (0 and 5 mg/L) and three dietary carbohydrate levels (low carbohydrate diet (LCD, 10%), medium carbohydrate diet [MCD, 20%], and high carbohydrate diet [HCD, 30%]), and lasted six weeks. The results showed that the prawns fed on MCD had higher weight gain than those fed on LCD and HCD during ammonia stress. Moreover, the prawns fed on MCD had significantly lower acid phosphatase and alkaline phosphatase activities during ammonia stress. Feeding the prawns on the MCD increased B cells in the hepatopancreas during ammonia stress. Interestingly, the prawns fed on MCD had significantly lower superoxide dismutase activity compared to LCD and HCD during ammonia stress. Moreover, the prawns fed on MCD had significantly lower pyruvate kinase activity and pyruvate and lactic acid contents, while those fed on LCD had significantly higher succinic dehydrogenase, 6-phosphogluconic dehydrogenase, and phosphoenol pyruvate carboxykinase activities during ammonia stress. The prawns fed on the MCD increased significantly glutaminase activity and decreased the ammonia content in the serum during ammonia exposure. In addition, feeding the prawns on MCD decreased significantly the expression of apoptosis and inflammation-related genes. Taken together, the MCD supplied energy required to counteract ammonia stress, which increased growth, improved antioxidant capacity, facilitated ammonia excretion, and alleviated inflammation and apoptosis of the oriental river prawn.


Assuntos
Antioxidantes , Palaemonidae , Animais , Antioxidantes/metabolismo , Palaemonidae/genética , Palaemonidae/metabolismo , Amônia/metabolismo , Amônia/farmacologia , Carboidratos da Dieta/metabolismo , Carboidratos da Dieta/farmacologia , Inflamação , Piruvatos/metabolismo , Piruvatos/farmacologia , Glucose/metabolismo , Glucose/farmacologia
7.
Fish Shellfish Immunol ; 140: 108945, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37451525

RESUMO

Tumor necrosis factor receptor-associated factor 6 (TRAF6) is an adapter protein that triggers downstream cascades mediated by both TNFR and the interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) superfamily. TRAF6 is involved in various biological processes, including innate and adaptive immunity. In the present study, a homolog of TRAF6 from Macrobrachium rosenbergii (MrTRAF6) was identified and characterized. The full-length cDNA of MrTRAF6 consisted of 2,114 nucleotides with an open reading frame (ORF) of 1,695 nucleotides encoding a 564-amino acid protein that contained a conserved TRAF family motif including two RING-type zinc fingers and a C-terminal meprin and TRAF homology (MATH) domain. The putative amino sequence of MrTRAF6 shared 45.5-97.3% identity with TRAF6s from other crustacean species with the highest identity to Macrobrachium nipponense TRAF6. Phylogenetic analysis revealed that MrTRAF6 was closely related to TRAF6 of invertebrates and clustered with crustaceans. According to gene expression analysis, the MrTRAF6 transcript demonstrated broad expression in all tissues tested, with the highest expression level in gill and the lowest in muscle tissues. Upon immune challenge with Aeromonas hydrophila, significant upregulation of MrTRAF6 expression was found in the gill, hepatopancreas, hemocyte, and muscle. Furthermore, an RNA interference assay showed that silencing MrTRAF6 by dsRNA could reduce the expression of mannose-binding lectin (MBL) and crustin, but no significant change was detected in anti-lipopolysaccharide factor 5 (ALF5) levels. In addition, the cumulative mortality rate of MrTRAF6-silenced M. rosenbergii was significantly increased after A. hydrophila infection. These findings indicated that MrTRAF6 is involved in antibacterial activity and plays a critical role in the innate immune response of M. rosenbergii.


Assuntos
Palaemonidae , Fator 6 Associado a Receptor de TNF , Animais , Sequência de Bases , Aeromonas hydrophila/genética , Sequência de Aminoácidos , Filogenia , Nucleotídeos/metabolismo , Palaemonidae/genética , Palaemonidae/metabolismo , Imunidade Inata/genética
8.
Genes (Basel) ; 14(7)2023 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-37510358

RESUMO

XRN1 is an exoribonuclease that degrades mRNA in the cytoplasm along the 5'-3' direction. A previous study indicated that it may be involved in the reproduction of Macrobrachium nipponense. Quantitative real-time PCR was used to detect the spatiotemporal expression pattern of Mn-XRN1. At the tissue level, Mn-XRN1 was significantly expressed in the ovary. During development, Mn-XRN1 was significantly expressed at the CS stage of the embryo, on the 10th day post-larval and in the O2 stage of ovarian reproduction. The in situ hybridization results showed the location of Mn-XRN1 in the ovary. The expression of Mn-VASA was significantly increased after in vivo injection of Mn-XRN1 dsRNA. This suggests that Mn-XRN1 negatively regulates the expression of Mn-VASA. Furthermore, we counted the number of M. nipponense at various stages of ovarian reproduction on different days after RNAi. The results showed that ovarian development was significantly accelerated. In general, the results of the present study indicate that Mn-XRN1 has an inhibitory effect on the ovarian maturation of M. nipponense. The inhibitory effect might be through negative regulation of Mn-VASA.


Assuntos
Palaemonidae , Animais , Feminino , Sequência de Aminoácidos , Palaemonidae/genética , Palaemonidae/metabolismo , Sequência de Bases , Ovário/metabolismo , Interferência de RNA
9.
Fish Shellfish Immunol ; 139: 108871, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37295736

RESUMO

Crustins represent one type of antimicrobial peptides (AMPs) that are key components of the innate immune process of crustaceans. This study successfully identified a novel crustin-like peptide, EcCrustin2, in ridgetail white prawn, Palaemon carinicauda (formerly Exopalaemon carinicauda). EcCrustin2 was found to be 1082 bp in length, with a 378 bp open reading frame (ORF) encoding 125 amino acids. The deduced amino acid sequence of EcCrustin2 exhibited characteristics of crustins in crustacean, including a Cys-rich region at the N-terminus as well as a whey acidic protein domain at the C-terminus. Phylogenetic analysis revealed that the EcCrustin2 was first clustered with Type I crustins, then with other crustins. Expression of EcCrustin2 was mainly detected in immune tissues, including hemocytes, gill and stomach. The expression level of EcCrustin2 was also significantly up-regulated after being exposed to lipopolysaccharide (LPS), lipoteichoic acid (LTA), Vibrio parahaemolyticus and Staphylococcus aureus. EHP infection could also induce EcCrustin2 expression in P. carinicauda. Knockdown of EcCrustin2 with siRNA increased the mortality of V. parahaemolyticus challenged shrimp. Finally, the recombinant EcCrustin2 protein was obtained and demonstrated a wide spectrum of antibacterial activity in vitro. These results indicated that EcCrustin2 takes part in the immune response against bacteria and EHP infection.


Assuntos
Palaemonidae , Vibrio parahaemolyticus , Animais , Filogenia , Palaemonidae/genética , Palaemonidae/metabolismo , Clonagem Molecular , Sequência de Bases , Peptídeos Catiônicos Antimicrobianos/química , Vibrio parahaemolyticus/fisiologia , Proteínas Recombinantes/genética , Imunidade , Proteínas de Artrópodes/química
10.
Gen Comp Endocrinol ; 340: 114306, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37150420

RESUMO

Vitellogenin (Vg) is the precursor of vitellin, which is an important female-specific protein stored in oocytes as the major nutrient and energy sources for embryogenesis in oviparous animals. In this study, we performed comprehensive genome-wide analysis of Vg gene family in the prawn Macrobrachium rosenbergii, and eight Vg genes designated as MrVg1a, MrVg1b and MrVg2-7 were identified. MrVg1a clusters with the previously described MrVg1b near the end of chromosome 46 and MrVg2 is on the chromosome 42 while MrVg3-7 cluster on the chromosome 23. All the putative MrVg proteins are characterized by the presence of three conserved functional domains: LPD-N, DUF1943 and vWD. Phylogenetic analysis revealed that MrVg1a shares 93% identity with MrVg1b and groups together into a branch while MrVg2-7 group into another branch, suggesting that MrVg1a, 1b and MrVg2-7 might diversify from a common ancestral gene. All the corresponding MrVg transcripts especially for MrVg1 exhibit high expression in the female hepatopancreas at late vitellogensis stage but extremely low in the ovaries except MrVg5, indicating that hepatopancreas is the major site of MrVgs synthesis. In the male, interestingly, MrVg5 and MrVg6 are also highly expressed in the testis, suggesting their potential involvement in testicular development. Bilateral ablation of eyestalk significantly upregulate all the MrVgs mRNA in the female hepatopancreas and the MrVg1 in ovary, but have no effect on the expression of MrVg2-7 in the ovary, demonstrating that eyestalk hormones could promote the ovarian development mostly by inducing the synthesis of MrVgs in the hepatopancreas but rarely in the ovary. Our results provide new insights into the prawn MrVgs family and improve our understanding of the potential role for each member of the family in the gonadal development of M. rosenbergii.


Assuntos
Decápodes , Palaemonidae , Animais , Feminino , Masculino , Vitelogeninas/genética , Vitelogeninas/metabolismo , Palaemonidae/genética , Palaemonidae/metabolismo , Filogenia , Decápodes/metabolismo , Proteínas/metabolismo , Água Doce
11.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239827

RESUMO

Sex reversal induced by 17ß-estradiol (E2) has shown the potential possibility for monoculture technology development. The present study aimed to determine whether dietary supplementation with different concentrations of E2 could induce sex reversal in M. nipponense, and select the sex-related genes by performing the gonadal transcriptome analysis of normal male (M), normal female (FM), sex-reversed male prawns (RM), and unreversed male prawns (NRM). Histology, transcriptome analysis, and qPCR were performed to compare differences in gonad development, key metabolic pathways, and genes. Compared with the control, after 40 days, feeding E2 with 200 mg/kg at PL25 (PL: post-larvae developmental stage) resulted in the highest sex ratio (female: male) of 2.22:1. Histological observations demonstrated the co-existence of testis and ovaries in the same prawn. Male prawns from the NRM group exhibited slower testis development without mature sperm. RNA sequencing revealed 3702 differentially expressed genes (DEGs) between M vs. FM, 3111 between M vs. RM, and 4978 between FM vs. NRM. Retinol metabolism and nucleotide excision repair pathways were identified as the key pathways for sex reversal and sperm maturation, respectively. Sperm gelatinase (SG) was not screened in M vs. NRM, corroborating the results of the slice D. In M vs. RM, reproduction-related genes such as cathepsin C (CatC), heat shock protein cognate (HSP), double-sex (Dsx), and gonadotropin-releasing hormone receptor (GnRH) were expressed differently from the other two groups, indicating that these are involved in the process of sex reversal. Exogenous E2 can induce sex reversal, providing valuable evidence for the establishment of monoculture in this species.


Assuntos
Palaemonidae , Animais , Masculino , Feminino , Palaemonidae/metabolismo , Sêmen , Perfilação da Expressão Gênica/métodos , Estradiol/farmacologia , Estradiol/metabolismo , Ovário/metabolismo , Transcriptoma
12.
Environ Toxicol Chem ; 42(4): 846-858, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36692111

RESUMO

N-acetyl-ß-D-glucosaminidase (NAGase) is important for crustaceans because the enzyme activity is necessary for the molting process. The present study aimed to assess the sensitivity of Palaemon serratus NAGase activity to a set of compounds of diverse chemical families in the context of in vitro exposures. Compounds representing different chemical families were selected according to their abundance, impact in the environment, and relevance as disruptors of the molting process. In a first step, four solvents (dimethylsulfoxide [DMSO], methanol, acetone, and ethanol) were tested to determine their suitability to dissolve hydrophobic compounds without affecting NAGase activity. Exclusively, ethanol had no effect on enzyme activity and on the integrity of the proteins present in the enzyme extract. The 18 other compounds were tested and four of these compounds, pentoxifylline, fenoxycarb, dithiocarbamate, and RH5849, showed a specific alteration on the activity of NAGase, without affecting the protein content. However, cadmium, zinc, and glyphosate showed a nonspecific alteration, affecting both the enzyme activity and the proteins, whereas ibuprofen exclusively altered the protein content. Finally, 10 of the 22 tested compounds (including DMSO, acetone, and methanol) showed a direct alteration of NAGase activity. Environ Toxicol Chem 2023;42:846-858. © 2023 SETAC.


Assuntos
Decápodes , Palaemonidae , Humanos , Animais , Acetilglucosaminidase/química , Acetilglucosaminidase/metabolismo , Palaemonidae/metabolismo , Acetona , Dimetil Sulfóxido , Metanol
13.
Sci Total Environ ; 856(Pt 1): 158732, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36122726

RESUMO

Species from shallow marine environments are particularly vulnerable to extreme weather events (heatwaves and extreme rainfall) that can promote abrupt environmental shifts, namely in temperature and salinity (respectively). To assess how these shifts impact species' cellular stress responses (CSR), ditch shrimps Palaemon varians were exposed to a chronic (28 days) thermohaline stress experiment. Three levels of temperature (20, 23 and 26 °C) and two levels of salinity (20 and 40) were tested in a full factorial experiment, and shrimps sampled at the 7th, 14th, 21st and 28th day of exposure. Survival, wet weight (as proxy for growth), and cellular stress biomarkers associated with oxidative stress (LPO - Lipid Peroxidation, GST - Glutathione-S-Transferase, SOD - Superoxide Dismutase, TAC - Total Antioxidant Capacity and CAT - Catalase) and protein denaturation (UBI - Ubiquitin and HSP-70 - Heat Shock Protein 70 kDa) were analysed in shrimps' muscle at each sampling day. Temperature and time of exposure significantly affected biomarker levels, with shrimps exposed to 20 and 26 °C revealing more pronounced differences. No interactions were detected between temperature and salinity, suggesting that these factors display additive effects on shrimps' CSR. Antioxidant agents (CAT and TAC) increased under elevated temperature, while protein denaturation markers (UBI and HSP-70) were mostly affected by time of exposure, decreasing at 28 days. Total protein reserves increased throughout time and no effects on wet weight were observed. A negative correlation between wet weight and HSP-70 was detected, suggesting that HSP-70 levels are dependent on organism size. Peak survival (~73 %) was found under 20 °C and salinity 40 and lower survival (~30-40 %) was associated with higher temperatures (23 and 26 °C) and lower salinity (20). We conclude that P. varians displays some level of acclimation capacity but differences in survival may indicate effects on osmoregulation processes and the need for longer timeframes to fully acclimate to heat and hyposaline stress.


Assuntos
Decápodes , Clima Extremo , Palaemonidae , Animais , Palaemonidae/metabolismo , Plásticos , Antioxidantes , Aclimatação , Decápodes/metabolismo , Glutationa Transferase/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Biomarcadores/metabolismo
14.
Environ Toxicol ; 38(3): 545-554, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36288433

RESUMO

Ammonia is one of the common stress factors in aquaculture. However, the effect of chronic ammonia exposure in juvenile oriental river prawn (Macrobrachium nipponense) is currently unexplored. This study explored the effects of chronic ammonia on juvenile healthy oriental river prawns. Fifty prawns (0.123 ± 0.003 g) were exposed to 0, 5, and 15 mg/L total ammonia nitrogen (TAN) in triplicates for 28 days. The effects of chronic ammonia challenge were evaluated on growth, antioxidant capacity, hepatopancreas and gill morphology, and glucose and ammonia metabolism. The results showed that, the chronic ammonia exposure reduced significantly survival rate and weight gain of prawns. The prawns exposed to 15 mg/L ammonia had induced oxidative stress. However, the prawn exposed to 15 mg/L ammonia had significantly lower aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and acid phosphatase activities in the serum. Furthermore, exposure of prawns to 15 mg/L ammonia increased the activities of hexokinase, pyruvate kinase, pyruvate and lactic acid content, and glutamine synthase activity. However, the prawns exposed to 15 mg/L ammonia, reduced succinic dehydrogenase, 6-phosphogluconic dehydrogenase, phosphoenolpyruvate carboxykinase, glutamate synthase, and glutamate dehydrogenase activities but increased ammonia content in serum. The exposure of ammonia deformed lumen, damaged basement membrane and decreased secretory cells in the hepatopancreas, disordered gill epithelial and pillar cells, and caused gill filament base vacuolation. Our study indicates that chronic ammonia stress impairs growth performance, tissue morphology, induces oxidative stress, and alters glucose and ammonia metabolism in juvenile oriental river prawns.


Assuntos
Palaemonidae , Animais , Palaemonidae/metabolismo , Amônia/toxicidade , Glucose/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo
15.
Ecotoxicol Environ Saf ; 249: 114393, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508808

RESUMO

Semicarbazide (SEM), the metabolite of antibiotic nitrofurazone, is often used as the biomarker to determine the use of nitrofurazone. Frequent false-positive events of SEM have brought great trouble to the aquatic industry in international trade. In this paper, the situation of endogenous SEM in aquatic products was investigated, and the possible mechanism of amino acid conversion into SEM was studied by establishing a simulated oxidation system and a urea system. The results revealed the presence of endogenous SEM in the muscle tissue of shrimps, and the content of SEM ranged from 0.56 to 5.28 ng/g, which presented as Macrobrachium nipponense>Macrobrachium rosenbergii>Procambarus clarkii. The increase in SEM production of control lysine under natural oxidation conditions suggests that oxidation has an effect on the conversion of SEM. Under the action of the simulated oxidation system, the SEM of Arginine, Lysine, Citrulline and Glutamine among the 21 amino acids were increased, and the polymer azine was formed. In combination with the structure of four amino acids, it was presumed that the group of amide is a key intermediate structure for the formation of endogenous SEM. In addition, under the urea system, the content of SEM produced by amino acids increased after the addition of urea, and the concentration of urea had a significant correlation with the content of SEM. Taken together, the production of endogenous SEM in shrimps is related to amino acids and urea, and the urea cycle and other substances containing amide structures should also be considered in future explorations.


Assuntos
Nitrofurazona , Palaemonidae , Animais , Aminoácidos , Lisina , Comércio , Internacionalidade , Semicarbazidas/metabolismo , Ureia/química , Palaemonidae/metabolismo
16.
Front Endocrinol (Lausanne) ; 13: 1084802, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545330

RESUMO

Polo-like kinase 1 (Plk1) has multiple functions in the cell cycle, including in the maturation of centrosomes during the G2/M transition, the separation of centrosomes, and the activation of cyclin-dependent kinase 1 expression and spindle assembly. In this study, we investigated the potential regulatory roles of Plk1 in the reproductive development of the male oriental river prawn (Machrobrachium nipponense). The full cDNA sequence of Mn-Plk1 was 2360 base pairs long, with an open reading frame of 1836 base pairs encoding 611 amino acids. Protein sequence alignment identified a conserved serine/threonine kinase domain and two Polo-boxes. Phylogenetic tree analysis revealed that Mn-Plk1 had the closest evolutionary distance with Plk1s of freshwater prawns and then with those of crustacean species, whereas the evolutionary distance with mollusks was much more distant. Quantitative PCR analysis predicted that Mn-Plk1 plays essential roles in the regulation of gonad development. RNA interference analysis and histological observations showed that expression of insulin-like androgenic gland hormone decreased as the expression of Mn-Plk1 decreased, and fewer than 5% of cells were sperm cells at day 14 in the dsPlk1 injected prawns. This result indicated that Plk1 positively regulated testis development in M. nipponense by affecting the expression of this hormone. Our results highlight the functions of Plk1 in M. nipponense and provide valuable information that can be applied to establish artificial techniques to regulate testis development in this species.


Assuntos
Decápodes , Palaemonidae , Animais , Masculino , Interferência de RNA , Palaemonidae/genética , Palaemonidae/metabolismo , Filogenia , Sequência de Bases , Sêmen/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Decápodes/genética , Insulina/metabolismo
17.
Front Endocrinol (Lausanne) ; 13: 1059936, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568080

RESUMO

The giant freshwater prawn pjMacrobrachium rosenbergii is one of the best studied species in aquaculture. However, the transcriptional changes associated with embryonic development and the sexual differentiation mechanism of M. rosenbergii remain to be elucidated. To characterize the embryonic development of this prawn and to determine whether differential expression and differential splicing play roles in the early sexual differentiation of M. rosenbergii, we profiled five developmental days of male and female embryos by RNA sequencing. We identified modules of co-expressed genes representing waves of transcription that correspond to physiological processes in early embryonic development (such as the maternal-to-zygotic transition) up to preparation for life outside the egg (development of muscles, cuticle etc.). Additionally, we found that hundreds of genes are differentially expressed between sexes, most of them uncharacterized, suggesting that the sex differentiation mechanism of M. rosenbergii might contain clade-specific elements. The resulting first-of-a-kind transcriptional map of embryonic development of male and female M. rosenbergii will guide future studies to reveal the roles of specific genes and splicing isoforms in the embryonic development and sexual differentiation process of M. rosenbergii.


Assuntos
Decápodes , Palaemonidae , Animais , Feminino , Masculino , Palaemonidae/genética , Palaemonidae/metabolismo , Diferenciação Sexual/genética , Desenvolvimento Embrionário/genética , Água Doce
18.
Ying Yong Sheng Tai Xue Bao ; 33(10): 2836-2844, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36384621

RESUMO

To explore the physiological and behavioral responses of male and female Macrobrachium rosenbergii under hypoxia stress, an experiment with three dissolved oxygen (DO) levels (6.46, 4.48 and 3.27 mg·L-1, 6.46 mg·L-1 as control) was conducted. The enzyme activities of energy metabolism in hepatopancreas and muscles of male and female M. rosenbergii were measured after six days of hypoxia stress. The results showed that the enzyme activities of aerobic metabolism in muscles and swimming abilities were significantly decreased as DO decreased from 6.46 mg·L-1 to 4.48 mg·L-1, with the decreases being less in males than females. There was no significant difference in enzyme activities of anaerobic metabolism. When DO was further decreased to 3.27 mg·L-1, the enzyme activities of aerobic metabolism and anaerobic metabolism in muscles significantly decreased. The activity of lactate dehydrogenase (LDH) in anaerobic metabolism of hepatopancreas and tail-flipping speeds significantly decreased in males and females, with less decrease in females than that in males for LDH activity of hepatopancreas. The swimming ability was positively correlated with the enzyme activities of aerobic metabolism in pleopods muscles. There was significant correlation between tail-flipping abilities and enzyme activities of anaerobic metabolism. M. rosenbergii could reduce its reliance on energy metabolism during hypoxia stress, but with negative consequences on locomotor abilities. The muscles were preferentially powered to meet energy requirements of locomotion in males, while females gave priority to energy supply for hepatopancreas under insufficient oxygen conditions.


Assuntos
Palaemonidae , Animais , Masculino , Feminino , Palaemonidae/metabolismo , Hipóxia/metabolismo , Oxigênio , Hepatopâncreas/metabolismo , Músculos/metabolismo
19.
Genes (Basel) ; 13(11)2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36360319

RESUMO

Cyclin B (CycB) plays essential roles in cell proliferation and promotes gonad development in many crustaceans. The goal of this study was to investigate the regulatory roles of this gene in the reproductive development of male oriental river prawns (Macrobrachium nipponense). A phylo-genetic tree analysis revealed that the protein sequence of Mn-CycB was most closely related to those of freshwater prawns, whereas the evolutionary distance from crabs was much longer. A quantitative PCR analysis showed that the expression of Mn-CycB was highest in the gonad of both male and female prawns compared to that in other tissues (p < 0.05), indicating that this gene may play essential roles in the regulation of both testis and ovary development in M. nipponense. In males, Mn-CycB expression in the testis and androgenic gland was higher during the reproductive season than during the non-reproductive season (p < 0.05), implying that CycB plays essential roles in the reproductive development of male M. nipponense. An RNA interference analysis revealed that the Mn-insulin-like androgenic gland hormone expression decreased as the Mn-CycB expression decreased, and that few sperm were detected 14 days after the dsCycB treatment, indicating that CycB positively affects testis development in M. nipponense. The results of this study highlight the functions of CycB in M. nipponense, and they can be applied to studies of male reproductive development in other crustacean species.


Assuntos
Decápodes , Palaemonidae , Animais , Feminino , Masculino , Palaemonidae/genética , Palaemonidae/metabolismo , Interferência de RNA , Ciclina B/genética , Ciclina B/metabolismo , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Sêmen/metabolismo
20.
Fish Shellfish Immunol ; 131: 454-469, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257556

RESUMO

Molting is a basic physiological behavior of the Oriental river prawn (Macrobrachium nipponense), however, the gene expression patterns and immune mechanisms during the molting process of Oriental river prawn are unclear. In the current study, the gene expression levels of the hepatopancreas of the Oriental river prawn at different molting stages (pre-molting, Prm; mid-molting, Mm; and post-molting, Pom) were detected by mRNA sequencing. A total of 1721, 551, and 1054 differentially expressed genes (DEGs) were identified between the Prm hepatopancreas (PrmHe) and Mm hepatopancreas (MmHe), MmHe and Pom hepatopancreas (PomHe) and PrmHe and PomHe, respectively. The results showed that a total of 1151 DEGs were annotated into 316 signaling pathways, and the significantly enriched immune-related pathways were "Lysosome", "Hippo signaling pathway", "Apoptosis", "Autophagy-animal", and "Endocytosis". The qRT-PCR verification results of 30 randomly selected DEGs were consistent with RNA-seq. The expression patterns of eight immune related genes in different molting stages of the Oriental river prawn were analyzed by qRT-PCR. The function of Caspase-1 (CASP1) was further investigated by bioinformatics, qRT-PCR, and RNAi analysis. CASP1 has two identical conserved domains: histidine active site and pentapeptide motif, and the expression of CASP1 is the highest in ovary. The expression levels of triosephosphate isomerase (TPI), Cathepsin B (CTSB) and Hexokinase (HXK) were evaluated after knockdown of CASP1. This research provides a valuable basis to improve our understanding the immune mechanisms of Oriental river prawns at different molting stages. The identification of immune-related genes is of great significance for enhancing the immunity of the Oriental river prawn, or other crustaceans, by transgenic methods in the future.


Assuntos
Palaemonidae , Feminino , Animais , Palaemonidae/metabolismo , Muda/genética , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Hepatopâncreas/metabolismo , Perfilação da Expressão Gênica , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...